Ambiguity in Sequential Data: Predicting Uncertain Futures With Recurrent Models
نویسندگان
چکیده
منابع مشابه
Dynamic Frailty and Change Point Models for Recurrent Events Data
Abstract. We present a Bayesian analysis for recurrent events data using a nonhomogeneous mixed Poisson point process with a dynamic subject-specific frailty function and a dynamic baseline intensity func- tion. The dynamic subject-specific frailty employs a dynamic piecewise constant function with a known pre-specified grid and the baseline in- tensity uses an unknown grid for the piecewise ...
متن کاملUncertain Data Models
An uncertain data model is a system for representing incomplete or uncertain data. An uncertain database asserts that a database is in one of multiple alternative states (possible worlds), each being a standard database. A probability distribution can be assigned to the set of possible worlds. A detailed account of relational uncertain data models and their evolution, as well as related computa...
متن کاملSequential Pattern Mining for Uncertain Data Streams using Sequential Sketch
Uncertainty is inherent in data streams, and present new challenges to data streams mining. For continuous arriving and large size of data streams, modeling sequences of uncertain time series data streams require significantly more space. Therefore, it is important to construct compressed representation for storing uncertain time series data. Based on granules, sequential sketches are created t...
متن کاملValue of Information with Sequential Futures Markets
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your perso...
متن کاملPredicting Sequential Pattern Changes in Data Streams
Data streams are utilized in an increasing number of real-time information technology applications. Unlike traditional datasets, data streams are temporally ordered, fast changing and massive. Due to their tremendous volume, performing multiple scans of the entire data stream is impractical. Thus, traditional sequential pattern mining algorithms cannot be applied. Accordingly, the present study...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Robotics and Automation Letters
سال: 2020
ISSN: 2377-3766,2377-3774
DOI: 10.1109/lra.2020.2974716